Intrusion Detection in Computer Networks based on Machine Learning Algorithms

نویسندگان

  • Alireza Osareh
  • Bita Shadgar
چکیده

Network security technology has become crucial in protecting government and industry computing infrastructure. Modern intrusion detection applications face complex requirements; they need to be reliable, extensible, easy to manage, and have low maintenance cost. In recent years, machine learning-based intrusion detection systems have demonstrated high accuracy, good generalization to novel types of intrusion, and robust behavior in a changing environment. This work aims to compare efficiency of machine learning methods in intrusion detection system, including artificial neural networks and support vector machine, with the hope of providing reference for establishing intrusion detection system in future. Compared with other related works in machine learning-based intrusion detectors, we propose to calculate the mean value via sampling different ratios of normal data for each measurement, which lead us to reach a better accuracy rate for observation data in real world. We compare the accuracy, detection rate, false alarm rate for 4 attack types. The extensive experimental results on the KDD-cup intrusion detection benchmark dataset demonstrate that the proposed approach produces higher performance than KDD Winner, especially for U2R and U2L type attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

A Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders

Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...

متن کامل

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

Assessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing

Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...

متن کامل

A New Intrusion Detection System to deal with Black Hole Attacks in Mobile Ad Hoc Networks

By extending wireless networks and because of their different nature, some attacks appear in these networks which did not exist in wired networks. Security is a serious challenge for actual implementation in wireless networks. Due to lack of the fixed infrastructure and also because of security holes in routing protocols in mobile ad hoc networks, these networks are not protected against attack...

متن کامل

Securing Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining

Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008